IoT-Based System Prototype to Control Maize Cultivation on an Agroecological Farm

Juan Camilo Rodriguez Betancourt, Vivian Orejuela Ruiz, Edgar de Jesús Sandoval Arboleda, Luis Adrián Lasso Cardona

Abstract

The purpose of this study was to develop and test a prototype IoT-based system for maize cultivation control at an agroecological farm. The novelty of this study lies in addressing the crisis of depletion of natural resources, food scarcity, and reduction of production costs through innovative and sustainable solutions to support future food and environmental security initiatives. The impact on the problem is that the implementation of automation techniques in Colombian agriculture could reduce costs, improve the quality and consistency of crops, and increase the competitiveness of farmers in the market. The methodology involved four phases: number evaluation, monitoring the operation of the IoT, design and implementation of the electronic system, and testing and maintenance. The research was conducted using a quantitative theoretical-practical approach. The results allowed us to provide solutions and contribute to XBee S2C technologies, the integration of a monitoring and control system that operates over long distances, managing real-time data, automating processes with a high degree of security for irrigation, and improving decision-making and efficiency in water management. The study enabled the implementation of RF devices, which helped ensure secure communication between nodes without data loss, which is essential for irrigation control systems.

 

Keywords: precision agriculture, maize cultivation, internet of things, sensors, control system.

 

https://doi.org/10.55463/issn.1674-2974.51.7.18


Full Text:

PDF


References


ZHANG P., ZHANG J., and CHEN M. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. Journal of Environmental Economics and Management, 2017, 83: 8–31. https://doi.org/10.1016/j.jeem.2016.12.001

NUÑEZ D., BENAVIDES E., RODRÍGUEZ G., and SALAZAR D. Propuesta de una Plataforma de Bajo Costo Basada en Internet de las Cosas para Agricultura Inteligente. Cumbres, 2020, 6(1): 53-66. https://doi.org/10.48190/cumbres.v6n1a5

CASTRO D., CORAL W., CABRA J., COLORADO J., MÉNDEZ D., and TRUJILLO L. Survey on IoT solutions applied to healthcare. DYNA, 2017, 84(203): 192-200. https://doi.org/10.15446/dyna.v84n203.64558

BENITEZ V., PACHECO J., MORENO J., and NUÑEZ C. Autonomic Face Mask Detection with Deep Learning: An IoT Application. Revista mexicana de ingeniería biomédica, 2021, 42(2): 160–170. https://doi.org/10.17488/rmib.42.2.13

LASSO CARDONA L. A. Technological trends: A focus on citizen security. Ingeniería Solidaria, 2021, 17(1): 1–28. https://doi.org/10.16925/2357-6014.2021.01.02

QUEIROZ D. M. D., COELHO A. L. D. F., VALENTE D. S. M., and SCHUELLER J. K. Sensors Applied to Digital Agriculture: A Review. Revista Ciência Agronômica, 2020, 51(5): e20207751. https://doi.org/10.5935/1806-6690.20200086

MONTOYA E., COLORADO S., MUÑOZ W., and GOLONDRINO G. Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT. Revista Iberica de Sistemas e Tecnologias de Informacao, 2017, 24: 39-56. https://doi.org/10.17013/risti.24.39-56

ISLAM N., RASHID M., PASANDIDEH F., RAY B., MOORE S., and KADEL R. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability, 2021, 13(4): 1821. https://doi.org/10.3390/su13041821

LIMA G. C., FIGUEIREDO F. L., BARBIERI A. E., and SEKI J. Agro 4.0: Enabling agriculture digital transformation through IoT. Revista Ciência Agronômica, 2020, 51(5): e20207771. https://doi.org/10.5935/1806-6690.20200100

SEGUI PADRÓN G. G., & ARTILES BRITO J. F. Proposal of a 5G service for smart agriculture in Cuba. Revista Cubana de Transformación Digital, 2022, 3(1): e135. https://rctd.uic.cu/rctd/article/view/135

BADRAN A., & KASHMOOLA M. Smart Agriculture; Farm Irrigation System Using IoT. AL-Rafidain Journal of Computer Sciences and Mathematics, 2020, 14(2): 75–83. https://doi.org/10.33899/csmj.2020.167340

BREWSTER C., ROUSSAKI I., KALATZIS N., DOOLIN K., and ELLIS K. IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Communications Magazine, 2017, 55(9): 26–33. https://doi.org/10.1109/MCOM.2017.1600528

DELNEVO G., GIRAU R., CECCARINI C., and PRANDI C. A Deep Learning and Social IoT Approach for Plants Disease Prediction toward a Sustainable Agriculture. IEEE Internet of Things Journal, 2022, 9(10): 7243–7250. https://doi.org/10.1109/JIOT.2021.3097379

GONZÁLEZ CÁRDENAS J. O., FIGUEROA MILLÁN P. E., AMEZCUA VALDOVINOS I., and BENAVIDES DELGADO J. R. Diseño arquitectural de una plataforma IoT para la monitorización ambiental aplicada en viveros de plantas de Ornato. 3C TIC: Cuadernos de desarrollo aplicados a las TIC, 2022, 11(1): 223–249. https://doi.org/10.17993/3ctic.2022.111.223-249

MADRUGA A., ESTEVEZ A., SOSA R., GARCIA C., and SANTANA I. Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo. Ingeniería, 2019, 24(3): 224-234. https://doi.org/10.14483/23448393.14437

MARAVEAS C., PIROMALIS D., ARVANITIS K. G., BARTZANAS T., and LOUKATOS D. Applications of IoT for optimized greenhouse environment and resources management. Computers and Electronics in Agriculture, 2022, 198: 106993. https://doi.org/10.1016/j.compag.2022.106993

RAO R. N., & SRIDHAR B. IoT based smart crop-field monitoring and automation irrigation system. Proceedings of the 2nd International Conference on Inventive Systems and Control, Coimbatore, 2018, pp. 478–483. https://doi.org/10.1109/ICISC.2018.8399118

SIERRA J., MEDINA B., and VESGA J. Management system in intelligent agriculture based on Internet of Things. Espacios, 2018, 39(8): 20. https://www.revistaespacios.com/a18v39n08/18390820.html

VERA J., CONEJERO W., MIRA-GARCÍA A. B., CONESA M. R., and RUIZ-SÁNCHEZ M. C. Towards irrigation automation based on dielectric soil sensors. The Journal of Horticultural Science and Biotechnology, 2021, 96(6): 696–707. https://doi.org/10.1080/14620316.2021.1906761

WONGCHAI A., SHUKLA S. K., AHMED M. A., SAKTHI U., JAGDISH M., and KUMAR R. Artificial intelligence - enabled soft sensor and internet of things for sustainable agriculture using ensemble deep learning architecture. Computers and Electrical Engineering, 2022, 102: 108128. https://doi.org/10.1016/j.compeleceng.2022.108128

GOVAERTS B., VEGA D., CHÁVEZ X., NARRO L.A., SAN VICENTE GARCIA F. M., PALACIOS-ROJAS N., PÉREZ M., GONZÁLEZ G., ORTEGA P., CARVAJAL A., ARCOS A. L., BOLAÑOS J., ROMERO N., VANEGAS Y. F., ECHEVERRIA R. G., JARVIS A., JIMÉNEZ D., RAMIREZ-VILLEGAS J., KROPFF W., GONZALEZ C., NAVARRO-RACINES C. E., ORDÓÑEZ L., PRAGER S. D., and TAPASCO J. Maíz Para Colombia Visión 2030. Centro Internacional de Mejoramiento de Maíz y Trigo, México, 2019. https://repository.cimmyt.org/entities/publication/a67bf02b-f3b4-4971-8e19-4773a56342fe

DONOVAN M. Innovación agrícola para combatir el hambre oculta. Centro International de Mejoramiento de Maíz y Trigo, 2019. https://www.cimmyt.org/es/noticias/combatiendo-el-hambre-oculta-con-la-innovacion-agricola/


Refbacks

  • There are currently no refbacks.