Evaluation of the Bioactivity of MeOH:DMSO (1:1, v/v) Lime Peel Extract on Methicillin-Resistant Staphylococcus aureus

Evy Ratnasari Ekawati, Win Darmanto, Sri Puji Astuti Wahyuningsih


This laboratory study aimed to evaluate the bioactivity of MeOH:DMSO (1:1, v/v) lime peel extract on the methicillin-resistant bacteria Staphylococcus aureus (MRSA) isolated from infected skin wounds. A screening test was performed on the lime peel extract, and the extract’s total flavonoid level (mgHSP/g) was determined. The bioactivity test was based on the results of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests using extract concentrations of 6.25, 12.5, 25, 50, and 800 ppm as treatments, penicillin G as a positive control, and DMSO 10% as a negative control. The extract was found to contain a total flavonoid level of 6.7371 mgHSP/g. The MIC was found to be 50 ppm with an ∆OD value of −0.151. An MBC simple non-linear regression test showed that the increase in extract concentration from 6.25 to 800 ppm decreased the MRSA bacterial count by 87.1%. The eight variations in extract concentration could not determine MBC because all concentrations could only reduce the number of MRSA colonies, and none could kill MRSA.



Keywords: lime peels, flavonoids, methicillin-resistant Staphylococcus aureus, skin infections.



Full Text:



AL-AAMRI M. S., AL-ABOUSI N. M., AL-JABRI S. S., ALAM T., and KHAN S. A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. Journal of Taibah University Medical Sciences, 2018, 13(2): 108–112. https://doi.org/10.1016/j.jtumed.2017.12.002

TRONG LE N., VIET HO D., QUOC DOAN T., TUAN LE A., RAAL A., USAI D., MADEDDU S., MARCHETTI M., USAI M., RAPPELLI P., DIAZ N., ZANETTI S., NGUYEN H. T., CAPPUCCINELLI P., and DONADU M. G. In Vitro Antimicrobial Activity of Essential Oil Extracted from Leaves of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le in Vietnam. Plants, 2020, 9(4): 453. https://doi.org/10.3390/plants9040453

FERDES M. Antimicrobial Compounds from Plants. In: BUDIMIR A. (ed.) Fighting Antimicrobial Resistance. IAPC-OBP, Zagreb, 2018: 243–271. https://doi.org/10.5599/obp.15.15

TILLE P. M. Bailey & Scott’s Diagnostic Microbiology. 14th ed. Elsevier, Mosby, New York, 2018.

MUNIANDY K., GOTHAI S., TAN W. S., KUMAR S. S., ESA N. M., CHANDRAMOHAN G., AL-NUMAIR K. S., and ARULSELVAN P. In Vitro Wound Healing Potential of Stem Extract of Alternanthera sessilis. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 2705479. https://doi.org/10.1155/2020/2705479

SCUDIERO O., BRANCACCIO M., MENNITTI C., LANERI S., LOMBARDO B., DE BIASI M. G., DE GREGORIO E., PAGLIUCA C., COLICCHIO R., SALVATORE P., and PERO R. Human Defensins: A Novel Approach in The Fight Against Skin Colonizing Staphylococcus aureus. Antibiotics, 2020, 9(4): 198; https://doi.org/10.3390/antibiotics9040198

ARJYAL C., KC J., and NEUPANE S. Prevalence of Methicillin-Resistant Staphylococcus aureus in Shrines. International Journal of Microbiology, 2020, 2020: 7981648. https://doi.org/10.1155/2020/7981648

MALLESHAPPA P., KUMARAN R. C., VENKATARANGAIAH K., and PARVEEN S. Peels of Citrus Fruits: A Potential Source of Anti-inflammatory and Anti-nociceptive Agents. Pharmacognosy Journal, 2018, 10(6): 172–178. https://doi.org/10.5530/pj.2018.6s.30

EKAWATI E. R., PRADANA M. S., and DARMANTO W. Lime (Citrus aurantifolia) peel as natural antibacteria for wound skin infection caused by staphylococcus aureus. International Journal of Pharmaceutical Research, 2019, 11(1). https://doi.org/10.31838/ijpr/2019.11.01.042

RAFIQ S., KAUL R., SOFI S. A., BASHIR N., NAZIR F., and AHMAD NAYIK G. Citrus Peel As a Source of Functional Ingredient: A review. Journal of the Saudi Society of Agricultural Sciences, 2018, 17(4): 351–358. https://doi.org/10.1016/j.jssas.2016.07.006

CHRISCENSIA E., WIBOWO E. C., ENRIKO G., WIJAYA O. C., and SAHAMASTUTI A. A. T. Phytochemical Screening, Therapeutic Benefits, and Adverse Effects of Citrus aurantifolia - A Review. Indonesian Journal of Life Sciences, 2020, 2(2): 55–69.

SARIWATI A., FITRI I., PURNOMO A. S., and FATMAWATI S. Phytochemical, Antibacterial and Antioxidant Activities of Anthurium hookerii Leaves Extracts. HAYATI Journal of Biosciences, 2019, 26(3): 101–109.

WAKEEL A., JAN S. A., ULLAH I., SHINWARI Z. K., and XU M. Solvent Polarity Mediates Phytochemical Yield and Antioxidant Capacity of Isatis tinctoria. PeerJ, 2019, 7: e7857. https://doi.org/10.7717/peerj.7857

SUDIRA I. W., MERDANA I. M., and QURANI S. N. Preliminary Phitochemical Analysis of Guava Leaves (Psidium guajava L.) Extract as Antidiarrheal in Calves. Advances in Tropical Biodiversity and Environmental Sciences, 2019, 3(2): 21-24. https://doi.org/10.24843/ATBES.2019.v03.i02.p01

NURLINDA N., HANDAYANI V., and RASYID F. A. Spectrophotometric Determination of Total Flavonoid Content in Biancaea Sappan (Caesalpinia sappan L.) Leaves. Jurnal Fitofarmaka Indonesia, 2021, 8(3): 1–4. https://doi.org/10.33096/jffi.v8i3.712

MAKUASA D. A. A., & NINGSIH P. The Analysis of Total Flavonoid Levels in Young Leaves and Old Soursop Leaves (Annona muricata L.) Using UV-Vis Sepctrofotometry Methods. Journal of Applied Science Engineering Technology and Education, 2020, 2(1): 11–17. https://doi.org/10.35877/454RI.asci2133

HENDIANI I., SUSANTO A., CAROLINA D. N., IBRAHIM R., and BALATIF F. F. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of mangosteen (Garcinia mangostana Linn.) rind extract against Aggregatibacter actinomycetemcomitans. Padjadjaran Journal of Dentistry, 2020, 32(2): 131–135. https://doi.org/10.24198/pjd.vol32no2.27366

PARVEKAR P., PALASKAR J., METGUD S., MARIA R., and DUTTA S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles Against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 2020, 7(1): 105–109. https://doi.org/10.1080/26415275.2020.1796674

WIJAYA H., NOVITASARI, and JUBAIDAH S. Comparison of the Extraction Method to the Yield of Sea Hair Leaf Extract (Sonneratia caseolaris L. Engl). Jurnal Ilmiah Manuntung, 2018, 4(1): 79–83. https://doi.org/10.51352/jim.v4i1.148

ZHANG Q. W., LIN L. G., and YE W. C. Techniques for Extraction and Isolation of Natural products: A Comprehensive Review. Chinese Medicine, 2018, 13(1): 20. https://doi.org/10.1186/s13020-018-0177-x

SANKESHWARI R. M., ANKOLA A., BHAT K., and HULLATTI K. Soxhlet Versus Cold Maceration: Which Method Gives Better Antimicrobial Activity to Licorice Extract Against Streptococcus mutans? Journal of the Scientific Society, 2018, 45(2): 67-71. https://doi.org/10.4103/jss.JSS_27_18

KARAK P. Biological Activities of Flavonoids: an Overview. International Journal of Pharmaceutical Sciences and Research, 2019, 10(4): 1567-1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74

CHÁVEZ-GONZÁLEZ M. L., SEPÚLVEDA L., VERMA D. K., LUNA-GARCÍA H. A., RODRÍGUEZ-DURÁN L. V., ILINA A., and AGUILAR C. N. Conventional and Emerging Extraction Processes of Flavonoids. Processes, 2020, 8(4): 434. https://doi.org/10.3390/pr8040434

CHEN Q., WANG D., TAN C., HU Y., SUNDARARAJAN B., and ZHOU Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues From 27 Chinese Local Citrus Cultivars. Plants, 2020, 9(2): 196. https://doi.org/10.3390/plants9020196

ALHADRAMI H. A., HAMED A. A., HASSAN H. M., BELBAHRI L., RATEB M. E., and SAYED A. M. Flavonoids as Potential anti-MRSA Agents through Modulation of PBP2A: A Computational and Experimental study. Antibiotics, 2020, 9(9): 562. https://doi.org/10.3390/antibiotics9090562

STYAWAN A. A., & ROHMANTI G. Determination of flavonoid Levels of AlCl3 Methode in The Extract of Metanol Flowers (Clitoria ternatea L.). Jurnal Farmasi Sains dan Praktis, 2020, 6(2): 134–141. https://doi.org/10.31603/pharmacy.v6i2.3912

RAHMAWATI N. F., FAKHRI M. R., and HASBI. Hesperidin Gel From Sweet Orange Peels (Citrus sinensi L. OSBC) For Diabetic Ulcer Treatment. Jurnal Ilmiah Penalaran dan Penelitian Mahasiswa, 2020, 4(1): 138–146. http://jurnal.ukmpenelitianuny.org/index.php/jippm/article/view/181

MIKLASIŃSKA-MAJDANIK M., KĘPA M., WOJTYCZKA R. D., IDZIK D., and WĄSIK T. J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus aureus Clinical Strains. International Journal of Environmental Research and Public Health, 2018, 15(10): 2321. https://doi.org/10.3390/ijerph15102321

CHEW Y. L., MAHADI A. M., WONG K. M., and GOH J. K. Anti-Methicillin-Resistance Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth. And their Mechanism of Antibacterial Activity. BMC Complementary and Alternative Medicine, 2018, 18(1): 70. https://doi.org/10.1186/s12906-018-2137-5

XU X., XU L., YUAN G., WANG Y., QU Y., and ZHOU M. Synergistic Combination of Two Antimicrobial Agents Closing Each Other’s Mutant Selection Windows to Prevent Antimicrobial Resistance. Scientific Reports, 2018, 8(1): 7237. https://doi.org/10.1038/s41598-018-25714-z

DJAROT P., UTAMI N. F., VEONICHA N., RAHMADINI A., and IMAN A. N. Antibacterial Activity Tests of Staphylococcus Aureus and Phytochemical Screening in Family Asteraceae, Clusiaceae, Phyllanthaceae. Journal of Southwest Jiaotong University, 2020, 55(6). https://doi.org/10.35741/issn.0258-2724.55.6.7

RHEIMA A. M., MOHAMMED M. A., JABER S. H., and HAMEED S. A. Synthesis of Silver Nanoparticles Using the UV-Irradiation Technique in an Antibacterial Application. Journal of Southwest Jiaotong University, 2019, 54(5). https://doi.org/10.35741/issn.0258-2724.54.5.34


  • There are currently no refbacks.